The current cycle of global warming is changing the rhythms of climate that all living things have come to rely upon. What will we do to slow this warming? How will we cope with the changes we've already set into motion? While we struggle to figure it all out, the face of the Earth as we know it—coasts, forests, farms, and snowcapped mountains—hangs in the balance.
What Causes Global Warming?
Scientists have spent decades figuring out what is causing global warming. They've looked at the natural cycles and events that are known to influence climate. But the amount and pattern of warming that's been measured can't be explained by these factors alone. The only way to explain the pattern is to include the effect of greenhouse gases (GHGs) emitted by humans.
To bring all this information together, the United Nations formed a group of scientists called the Intergovernmental Panel on Climate Change, or IPCC. The IPCC meets every few years to review the latest scientific findings and write a report summarizing all that is known about global warming. Each report represents a consensus, or agreement, among hundreds of leading scientists.
One of the first things scientists learned is that there are several greenhouse gases responsible for warming, and humans emit them in a variety of ways. Most come from the combustion of fossil fuels in cars, factories and electricity production. The gas responsible for the most warming is carbon dioxide, also called CO2. Other contributors include methane released from landfills and agriculture (especially from the digestive systems of grazing animals), nitrous oxide from fertilizers, gases used for refrigeration and industrial processes, and the loss of forests that would otherwise store CO2.
Different greenhouse gases have very different heat-trapping abilities. Some of them can even trap more heat than CO2. A molecule of methane produces more than 20 times the warming of a molecule of CO2. Nitrous oxide is 300 times more powerful than CO2. Other gases, such as chlorofluorocarbons (which have been banned in much of the world because they also degrade the ozone layer), have heat-trapping potential thousands of times greater than CO2. But because their concentrations are much lower than CO2, none of these gases adds as much warmth to the atmosphere as CO2 does.
In order to understand the effects of all the gases together, scientists tend to talk about all greenhouse gases in terms of the equivalent amount of CO2. Since 1990, yearly emissions have gone up by about 6 billion metric tons of "carbon dioxide equivalent" worldwide, more than a 20 percent increase.
Effects of Global Warming
The planet is warming, from North Pole to South Pole, and everywhere in between. Globally, the mercury is already up more than 1 degree Fahrenheit (0.8 degree Celsius), and even more in sensitive polar regions. And the effects of rising temperatures aren’t waiting for some far-flung future. They’re happening right now. Signs are appearing all over, and some of them are surprising. The heat is not only melting glaciers and sea ice, it’s also shifting precipitation patterns and setting animals on the move.
Some impacts from increasing temperatures are already happening.
Ice is melting worldwide, especially at the Earth’s poles. This includes mountain glaciers, ice sheets covering West Antarctica and Greenland, and Arctic sea ice.
Researcher Bill Fraser has tracked the decline of the Adélie penguins on Antarctica, where their numbers have fallen from 32,000 breeding pairs to 11,000 in 30 years.
Sea level rise became faster over the last century.
Some butterflies, foxes, and alpine plants have moved farther north or to higher, cooler areas.
Precipitation (rain and snowfall) has increased across the globe, on average.
Spruce bark beetles have boomed in Alaska thanks to 20 years of warm summers. The insects have chewed up 4 million acres of spruce trees.
Other effects could happen later this century, if warming continues.
Sea levels are expected to rise between 7 and 23 inches (18 and 59 centimeters) by the end of the century, and continued melting at the poles could add between 4 and 8 inches (10 to 20 centimeters).
Hurricanes and other storms are likely to become stronger.
Species that depend on one another may become out of sync. For example, plants could bloom earlier than their pollinating insects become active.
Floods and droughts will become more common. Rainfall in Ethiopia, where droughts are already common, could decline by 10 percent over the next 50 years.
Less fresh water will be available. If the Quelccaya ice cap in Peru continues to melt at its current rate, it will be gone by 2100, leaving thousands of people who rely on it for drinking water and electricity without a source of either.
Some diseases will spread, such as malaria carried by mosquitoes.
Ecosystems will change—some species will move farther north or become more successful; others won’t be able to move and could become extinct. Wildlife research scientist Martyn Obbard has found that since the mid-1980s, with less ice on which to live and fish for food, polar bears have gotten considerably skinnier. Polar bear biologist Ian Stirling has found a similar pattern in Hudson Bay. He fears that if sea ice disappears, the polar bears will as well.
Solutions
The evidence that humans are causing global warming is strong, but the question of what to do about it remains controversial. Economics, sociology, and politics are all important factors in planning for the future.
Even if we stopped emitting greenhouse gases (GHGs) today, the Earth would still warm by another degree Fahrenheit or so. But what we do from today forward makes a big difference. Depending on our choices, scientists predict that the Earth could eventually warm by as little as 2.5 degrees or as much as 10 degrees Fahrenheit.
A commonly cited goal is to stabilize GHG concentrations around 450-550 parts per million (ppm), or about twice pre-industrial levels. This is the point at which many believe the most damaging impacts of climate change can be avoided. Current concentrations are about 380 ppm, which means there isn't much time to lose. According to the IPCC, we'd have to reduce GHG emissions by 50% to 80% of what they're on track to be in the next century to reach this level.
Is this possible?
Many people and governments are already working hard to cut greenhouse gases, and everyone can help.
Researchers Stephen Pacala and Robert Socolow at Princeton University have suggested one approach that they call "stabilization wedges." This means reducing GHG emissions from a variety of sources with technologies available in the next few decades, rather than relying on an enormous change in a single area. They suggest 7 wedges that could each reduce emissions, and all of them together could hold emissions at approximately current levels for the next 50 years, putting us on a potential path to stabilize around 500 ppm.
There are many possible wedges, including improvements to energy efficiency and vehicle fuel economy (so less energy has to be produced), and increases in wind and solar power, hydrogen produced from renewable sources, biofuels (produced from crops), natural gas, and nuclear power. There is also the potential to capture the carbon dioxide emitted from fossil fuels and store it underground—a process called "carbon sequestration."
In addition to reducing the gases we emit to the atmosphere, we can also increase the amount of gases we take out of the atmosphere. Plants and trees absorb CO2 as they grow, "sequestering" carbon naturally. Increasing forestlands and making changes to the way we farm could increase the amount of carbon we're storing.
Some of these technologies have drawbacks, and different communities will make different decisions about how to power their lives, but the good news is that there are a variety of options to put us on a path toward a stable climate.